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Abstract— A semi-infinite crack in a strip of an isotropic, functionally graded material under edge
loading and in-plane deformation conditions is analyzed. Mixed mode stress intensity factors are
analytically solved for up to a numerically determined parameter. The effects of material gradients
on the mode 1 and mode I stress intensity factors and the phase angle used to measure mode mixity
are determined. The solution is extended to the case where the strip is made of an orthotropic,
functionally graded material. These results are applied to solve a four-point bending specimen
configuration that may be used to test the fracture behavior of functionally graded materials. The
nature of the crack tip fields and possible fracture criterion for functionally graded materials are
discussed. Copyright € 1996 Elsevier Science Ltd

1. INTRODUCTION

Functionally graded materials (FGMs) to be used as, inter alia, superheat-resistive materials
have promised attractive applications in furnace liners, space structures, and fusion reactors.
FGMs consist of two distinct material phases, such as ceramic and metal alloy phases, and
are the mixture of them such that the composition of each changes continuously along one
direction. The change in microstructure induces chemical, material, and microstructural
gradients, and makes functionally graded materials different in behavior from homogeneous
materials and traditional composite materials (Yamanouchi et al., 1990 ; Holt er al., 1993).
These materials are tailorable in their properties via the design of the gradients in chemistry
and microstructure that is possible within them.

Experiments have shown that cracks occur in functionally graded materials (see above
references) although the absence of sharp interfaces does alleviate problems with interface
fracture. For cracks in this type of material, stress intensity factors are affected by the
material gradients. Moreover, the fracture modes of the cracks in FGMs are inherently
mixed when they are not parallel to the direction of material property variation, i.e., there
are typically both normal and shear tractions ahead of the crack tips because of the non-
symmetry in the material properties. To characterize the material, fracture toughness data
is required. To obtain the fracture toughness data, stress intensity factors for specimens
subjected to variable external loads are needed. Most previous works on FGM crack
configurations have concentrated on finite crack problems, e.g., Delale and Erdogan (1983,
1988) and Noda and Jin (1993) have analyzed a finite crack in a plate subjected to
mechanical and thermal loads. A semi-infinite crack in an interlayer between two dissimilar
materials was considered by Yang and Shih (1994), and they obtained an approximate
solution from a known bimaterial solution. We consider herein a semi-infinite crack in a strip
of an isotropic, functionally graded material under edge loading and in-plane deformation
conditions. Stress intensity factors for the crack tip are obtained. The solution is analytical
up to a parameter which is obtained numerically. The solution is extended to the case where
the strip is made of an orthotropic, functionally graded material. The results are applied to
analyze a four-point bending specimen configuration that may be used to test the fracture
behavior of functionally graded materials. The mode I11 stress intensity factor in the cracked
plate subjected to anti-plane deformation is obtained. The nature of the crack tip fields and
possible fracture criterion for functionally graded materials are discussed.
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The main emphasis here is to analyze fracture behavior in materials that possess
continuously graded microstructures. On the other hand, the physical picture developed
for the cracked microstructure actually provides a more realistic model for cracks along
interfaces, in general, at least for those that have any but atomic-scale width.

2. FIELD EQUATIONS FOR ISOTROPIC MEDIA

In this study, we take the elastic properties to be of following exponential forms

E(y) = Eye”,

v(y) = vo(l+ey)e”, (D

where v and ¢ are material constants representing the material gradients ; £, and v, are the
values of these elastic properties at y = 0. For plane stress problems, E'(y) = E(y) and
v'(y) = v(y), where E(y) and v(y) are Young’s modulus and Poisson’s ratio, respectively ;
for plane strain problems, E'(y) = E(»)/[1 —v(»)?] and v'(¥) = v(»)/[1 —v()")]. The par-
ameters y and ¢ have a dimension [length] ~'. These forms for the material properties have
been previously used by Delale and Erdogan (1988) and Noda and Jin (1993) ; they provide,
on the one hand, analytical flexibility and yet lead to somewhat simple forms for the field
equations. The shear modulus, u(y), relates to Young’s modulus and Poisson’s ratio by

E'(y)
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Using (1) and (2), the stress function ®(x,y) defined in the same way as that for
homogeneous materials, i.e., stresses are obtained from the second derivatives of the stress
function, satisfies the following equation

+y?—=0. (3)
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For a traction problem, the solution satisfies (3) and boundary conditions. The material

constant y enters the stress field of the traction problem, whereas the other material

parameters E,, v, and ¢ do not. In (3), the fourth-order differential terms do not involve y,

and constitute the biharmonic equation, which is the equation for homogeneous materials.
By dimensional analysis, the stress field has the following generic form

F xy
XLV :1 * _ == 4
Uz/(“xe}) O’l}[ <Vh5 h ’ h ah>a ( )

where i, j = 1, 2; T is a representative stress magnitude ; / is a characteristic length in the
problem; & is the group of lengths which represents the geometry of the problem. This
differs from the case of a homogeneous material in which material properties do not enter
the stress field of a traction problem, and also differs from the case of a bimaterial in which
Dundurs’ parameters (Dundurs, 1969) measuring the material mismatch enter the stress
field of a traction problem.

The parameters 74 in the solution is dependent on the thickness of a functionally
graded material, L, the Young’s moduli at the upper and the lower boundaries of the
material, £, and Ej, and the characteristic length, 4. From (1),
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It is seen that y4 is proportional to A/L, and increases logarithmically with the ratio of the
two Young’s moduli. For example, if #/L =1, yh = 0.35 for E,/E; = 0.5, and yh = 0.97
for E,/E; = 7. The choice of & is arbitrary. If 4, and /4, denote two choices for the charac-
teristic length, the corresponding stresses obtained satisfy the relation
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3. CRACK TIP FIELDS

A brief review of the crack tip fields in functionally graded materials is given in this
section. Consider a crack in a strip of a functionally graded material, as illustrated in Fig.
1. Stresses near the crack tip have a square-root singularity, and singular terms of the
stresses (Jin and Noda, 1994) are of the form

K K K
0y = B0+ =8O+ = a](0). ™
N  2nr N 2nr

where i, j=1, 2; r and 0 are the polar coordinates shown in Fig. 1. The dimensionless
angular functions 6,(0), &} (6) and &}/ (f) are the same as those for homogeneous materials.
This can be easily proved by expanding the stress function as X,_,r**®(6,y), and sub-
stituting the series into (3). The resulting equation for ®,(6, y) and the eigen-value problem
used to determine p do not involve y and are the same as those for homogeneous materials.
In fact, for any form of material properties and any orientation of the crack, the highest
order differential terms in the equation which the stress function satisfies are the three
fourth-order differential terms which constitute the biharmonic equation, and the terms in
the equation involving material gradients are the lower order differential terms. These lead
to that the equations for ®y(f), y) and p are the same as those for homogeneous materials.
The stress intensity factors K, Kj; and K, are functions of the material gradients, external
load, and geometry. Material gradients do not affect the order of the singularity and the
angular functions, but do affect the stress intensity factors. As a result the near-tip stresses
have the same form as that for a homogeneous material. For an interface crack, stresses
have an oscillatory singularity, and both the stress intensity factors and angular functions
involve Dundurs’ parameters, i.e.,

P—(—° Tél T/y(gr h
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Fig. 1. A semi-infinite crack in a strip of a functionally graded material subjected to edge loading.
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where K = K;+ (K, 1s complex stress intensity factor, and
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In (9), B 1s one of the two Dundurs’ parameters. The Dundurs’ parameters, « and f, are
defined as

o= (Ko + 1) — (e +1)
wy (K, + 1) 4 o (k) ‘|'])ﬂ
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p (ko + D)+ (k, +1)

(10)

where u, and y, are the shear moduli of the two bulk materials ; x; = 3 —4v; for plane strain
and x;, = (3 —v,)/1 +v,) for plane stress (i = 1, 2), with v, and v, being the Poisson’s ratios
of the two bulk materials. It is noted that, by considering material gradients near the tip of
an interface crack, the oscillatory behavior is removed, and the angular functions become
independent of material properties. In this sense, the solutions presented here represent a
more physically acceptable description of interface crack tip fields, at least for interfaces
that have a finite width.
The strains obtained from the stresses given in (7) are

&y = Su(0)a: 4+ [Sin(¥) — Sip(0)] o, (1D

where .S;;,( y) is the compliance tensor, and S,,(0) is the tensor at the crack tip. The second
term in the above equation is in the order of 2. So the singular strain field is

&y = Si(0)oy. (12)
From (12), one is able to show that the near-tip displacement field is the same as that for

the homogencous materials.
From (7), the traction at the distance r ahead of the crack tip is

K
0, tio, = (13)
N
for an in-plane problem. For a mode 111 problem, the traction is, likewise,
K
0, = (14)
’  2nr

Having the near tip stress and displacement fields, the energy release rate of the crack tip
is obtained as

_ ki Ki | Ki
EO) " E©) " 2u(0)

4 (15

where E'(0) and p(0) are the Young's modulus and the shear modulus at the crack tip,
respectively. It can be seen that the above eqns, (7) and (12)—(15), are independent of the
forms of the material properties and the orientation of the crack, and they all have the
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same forms as those for homogeneous materials. The path-independence of the J integral
(Rice, 1968) holds if the crack is perpendicular to the direction along which material
properties change ; this is implied in Rice’s original proof for homogeneous materials. Using
the near tip fields obtained above, it can be shown that the J integral is equal to the energy
release rate for the crack perpendicular to the direction along which material properties
change.

The complex stress intensity K = K;+ iK;, for FGMs has the following generic form

K = |K|e¥, (16)
where
K
Y = tan™' 7} (17)
1

is the phase angle of the complex stress intensity factor. The phase angle measures mode
mixity, i.e., the proportion of the shear traction to the normal traction ahead of the crack
tip, since

W = tan ! (“) . (18)
O3y Jo—0r0

As a result of the reguiar singularity, this, again, is consistent with the phase angle defined
for cracks in homogeneous materials. In the case of interface cracks, a material length is
needed to define the phase angle.

As a starting point, we postulate that the crack starts to propagate when the energy
release rate reaches a critical value T', the roughness of the FGM. The toughness is likely
dependent on the material gradients, the position of the crack tip, namely 4/H for the
configuration shown in Fig. 1, and the mode mixity . It is also possibly dependent on the
propagation direction ¢(—n < ¢ < 7) which is the angle between the propagation direction
and the x axis in Fig. 1. The energy release rate is a function of the external load, elastic
constants, the angle ¢ and the mode mixity . Now, the fracture criterion is stated as

4 =T, i(f‘f—l“)z(). (19)
¢

The criterion also determines the propagation direction (kink angle). If toughness in the
direction ¢ # 0 is relatively larger than that in the direction ¢ = 0, the crack would
propagate along its original orientation. In this case, the fracture criterion is

h
4 = F(E,(p), (20)

where I'(h/H, ) 1s the toughness along the direction ¢ = 0. The toughness of FGMs
may be measured by experiments or obtained from micromechanics by considering their
microstructures.

4. THE IN-PLANE PROBLEM

The in-plane crack problem is illustrated in Fig. 1, where a semi-infinite crack in a
strip occupies the negative x axis and the crack tip is at the origin. The material properties
change along the y axis. The geometry is specified by A, the distance between the crack face
and the upper boundary, and H, the distance between the crack face and the lower boundary.
The body extends infinitely in both the positive and negative x axes, and is loaded at the
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left side far behind the crack tip. The deformation far behind the crack tip consists of
bending and compression in the upper arm, and bending and tension in the lower arm. The
external load results in two forces which are of the same magnitude P but which act in
opposite directions, and two bending moments, M and M*. The compressive and tensile
forces act at the neutral axes of the upper and lower arms, respectively. One of the
two moments, M, is given independently, and the other is M* = M+ P(6,+ H—6,) by
equilibrium, where §, is the distance between the neutral axis of the upper arm and the
crack face and 4, is the distance between the neutral axis of the lower arm and the lower
boundary. According to the small-strain compatibility equations, the only non-zero strain,
€.y, 1N the two arms far behind the crack tip varies linearly along the y axis.

We consider bending deformation in the two arms far behind the crack tip resulting
from the two bending moments. The strain ¢, can be expressed as

B = —K(y—0y) @1

in the upper arm, where « is the curvature of the upper arm. The moment M relates to the
curvature by

M = kE,I,. (22)

In (22), I, is the moment of inertia and is given by

h h3
I = J & (v 0,7 dy = =, o), (23)
0
where
1 5, \? 2 ) 2 1 /6,\ 2 6 2
o (vh) = 12[ <1—') et — —— <l—l)e”'+~e”f‘h——(—’> — - }
vh h (yh)* h (vh)’* Yh\ h o) b k)’
(24)

When y = 0, o, = | so that I, = #*/12, a standard result for homogeneous materials. The
only non-zero stress in the arm is the normal stress in the cross section,

_ M(y—4é) -
—_— ¢

: 25
= ; 25)

By the equilibrium requirement jg o..dy = 0, the position of the neutral axis is obtained as

0, yhe"—e"+1

(26)
h b —1)
Similarly, results for the lower arm are
M*(y+H—0,) ,
Oy =——"F¢€
XX 12 *
H H3
_ ph—HY (o, dy = —
2 f & (y=0,)* dy =
57 H yH _ .vH ]
2 _ e —em+1 , 27

H  yHE"-1)

where
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(0 H) = a (yH) e 77 (28)

We next consider axial deformation in the two arms resulting from the two forces. Since
the compressive force acts on the neutral axis of the upper arm, the deformation caused by
it is uniform compression. The stress distribution in the cross section to produce the uniform
compression is

Py

o
e —1

(29)

0.\',‘( =

Similarly, the stress distribution in the cross section of the lower arm due to the tensile
force is

Oy = ———€. (30)

[t is seen that in the cross sections the strains vary linearly with y, whereas the stresses vary
exponentially with y. Expressions for the stresses and strains for the case that material
properties change linearly along the y axis have been derived by Freund (1993) and
Giannakopoulos ef al. (1994) in studying thermal and mechanical responses in a com-
positionally graded layer sandwiched between two dissimilar materials without cracks,
where a linear stress distribution along the thickness of the compositionally graded layer is
obtained from the linear variation of material properties. Giannakopoulos et al. (1994)
have also investigated plastic deformation in the compositionally graded layer. More
recently Maewal er al. (1995) have developed a more general framework for analyzing
thermally induced stresses in generally orthotropic FGMs with arbitrary gradients.

Having the remote field, the complex stress intensity factor K is obtained by the
application of the J integral, dimension analysis and linearity consideration. The procedure
is similar to that in Suo and Hutchinson (1990) for an interface crack. The complex stress
intensity factor is obtained as

1 (/A o |1 .
K=K +iK, :7(fP—ie’¢ —M)e“", 31
2\ A n

A= 1 1 +12 ha‘1+1 5\ h
! erh_1+1-e—rﬂ o \H h H| H’
1_12 12/hY
_oc,+a2 H)

_ 12 (hoy | SN\(hY &)
n = ——\— — — 1.
T Al \H T H\H

In (31), w = w(yh. h/H) 1s to be determined, and is in the range 0 < w < /2. The complex
stress intensity factor is fully obtained apart from the dimensionless real scalar w(yh, A/ H).
The expression for K has a similar form as that for an interface crack. In the interface crack
case, Dundurs’ parameters enter the solution as variables of 4, I, ¢ and o, whereas the
material constant y enters the solution as a variable of those parameters in our case.

To determine w(yh, h/ H), we solve the full boundary value problem for given y# and
h/H, using the integral equation method. Integral equations for this problem can be obtained
by Fourier transforms. The numerical procedure is to distribute dislocation densities simu-
lating opening and sliding displacements of the crack in terms of Chebyshev polynomials,

where
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Table 1. w(yh, h/H) (in degrees)

vh
hiH 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 22 24
0.0 53.8 54.9 56.0 56.9 57.5 58.0 58.3 58.5 58.6 58.6 58.5 58.4
0.1 535 54.8 56.0 56.9 57.5 58.0 58.3 58.5 58.6 58.6 58.5 58.4
0.5 51.6 52.4 53.2 54.0 54.7 553 55.9 56.4 56.8 57.1 57.4 57.5
1.0 49.6 50.1 50.7 51.2 51.7 52.2 52.7 53.1 53.5 53.8 54.1 54.4
2.0 47.0 473 47.6 47.9 48.2 48.5 48.8 49.1 49.4 49.6 49.9 50.2
10 40.8 40.9 40.9 41.0 41.1 41.2 412 41.3 41.4 41.5 41.6 41.7
100 39.0 39.0 39.0 39.1 39.1 39.1 39.1 39.1 391 39.1 391 39.1
65 T 1 T ll 1 1
w
@
g
o
([}
©
]
3
h/H=10
40 F .
3 1 1 L L
%.0 0.4 0.8 1.2 1.6 2.0 24
Fig. 2. Numerical results for ex(yh, A/ H).
P

I

Fig. 3. A four-point bending specimen.

and to adjust the coeflicients of these polynomials to satisfy the integral equations which
are expressions of equilibrium (see Thouless ez al., 1987). Table 1 gives numerical results
for o when 0 < yA <24 and H/H=0,0.1,0.5, 1, 2, 10 and 100, which are also shown in
Fig. 2. For most cases, the w increases as yh increases, and the increase is larger for smaller
h/H. For h/H = 100, the numerical solution shows little change of @ when y4 varies between

0 and 2.4.

When M =0, the phase angle ¢ = w; when P =0 (double-cantilever beam),
Y = w+¢@—90°. A four-point bending specimen configuration shown in Fig. 3 can be
reduced to the present problem by cutting it from the middle. By a superposition scheme
(Suo and Hutchinson, 1990) and above deformation analysis, the force P and the moment

M are
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Pyl [
P= ‘10' f (y+H-45)e"dy,

0

1

Pyl . <N
M= (r+H=6)(y—3))e" dy,
(

D

H+h
= J (y—35)2 e M dy.
C

D

(33)

(34

In (33) and (34), d, is the neutral axis of the right side of the plate, and is given by replacing
h by H+/in (26). Figure 4 shows that the phase angle and the magnitude of the complex
stress intensity factor for the four-point bending specimen. The phase angle varies as yh
varies between 0 and 2.4. The variation is larger for smaller 4/H, and is quite small when
h/H increases to 10. The magnitude of the complex stress intensity factor increases as yh
increases, and significantly increases as 4/H increases. Figure 5 shows the phase angle and
the magnitude of the complex stress intensity of the double-cantilever beam. In this figure,

v (in degrees)

IKIh*2/(P )

Fig. 4. The phase angle yr

55

0.4

0.8 1.2 1.6 2.0

2.4

(a)

(b)

and the magnitude of the complex stress intensity factor |K]| for four-

point bending specimen.
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Fig. 5. The phase angle ¢ and the magnitude of the complex stress intensity factor |K| for double-
cantilever beam.

the phase angle increases as yh or h/H increases. Similar to Fig. 5(a), the variation of the
phase angle for y/ between 0 and 2.4 is insignificant when #/H increases to 10.

The ratio of the Young’s moduli of the two material phases in a FGM, E; and E, is
usually less than 10. From (5),

In(E,/E;
vh = ﬁﬁ) <Inl0 < 2.4. (35)
This tells us that the numerical results for y4 between 0 and 2.4 given here provide a
complete solution for the semi-infinite crack in FGMs, shown in Fig. 1.

To obtain a quantitative feel for the behavior of the solution, consider the double-
cantilever beam (i.e., P =0) with £,/E;="7. If h/H =1, from (35), vA =~ 1. The stress
intensity factors are K;A%*/M = 3.55 and Ky h*?/M = 1.02, whereas for a homogeneous
material with #2/H = 1, they are 3.46 and 0, respectively. If i/ H = 0.1, yh = 0.18. The stress
intensity factors are Ki2*%/M = 1.92 and K;#** /M = —1.34, whereas for a homogeneous
material with #/H = 0.1, they are 1.96 and —1.47, respectively. If A/H = 10, yv4 =~ 1.8.
The stress intensity factors are K%M = 63.23 and K;#*?/M = 50.71, whereas for a
homogeneous material with #/H = 10, they are 62.09 and 46.52, respectively. This shows
that the change of K|, is larger than that of K| due to the change of material gradients. Also,
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the stress intensity factors at E,/E; = 7 are larger than those of a homogeneous material
except the case for A/H = 0.1.

For the four-point bending configuration with E,/E; =7 and h/H = 1, the stress
intensity factors are K\h¥%/(Py]) = 2.21 and K;h¥*/(P,) = 2.07; they are 1.73 and 1.50,
respectively, for a homogeneous material. If #/H = 0.1, the stress intensity factors are
Kih*?/(PoD) = 0.05 and K, 2*?/(Py) = 0.06 ; they are 0.03 and 0.03, respectively, for a homo-
geneous material. If 4/H = 10, the stress intensity factors are K#*%/(P,]) = 62.79 and
Kuh*?/(Pyf) = 51.21; they are 61.30 and 47.45, respectively, for a homogeneous material.
Similar to the double-cantilever beam, the change of K, is larger than that of K, due to the
change of material gradients; and the stress intensity factors at E;/E; = 7 are larger than
those of a homogeneous material.

5. SOLUTION FOR ORTHOTROPIC, FUNCTIONALLY GRADED MATERIALS

In this section, we consider the strip in Fig. 1 is made of an orthotropic, functionally
graded material. The problem is solved by orthotropy rescaling. In general, there are three
material gradients associated with two Young’s moduli and one shear modulus. The moduli
can be written in following forms

E\(y) = Epe’,
Ey(y) = Eyge'?,
ti2(y) = p(y)e™, (36)

where y,, 7, and y, are material constants; E,, and E,, are E|(y) and FE4(y) at y =0,
respectively ; u;,(y) is the shear modulus in the x—y plane. For plane stress problems, E
(y) = Ei(y)and E5(y) = E,(»), with E,(y) and E.(y) being Young’s moduli in the directions
parallel to the x axis and the yp axis, respectively. For plane strain problems, E
() = Ex()/[1 —vi;(0)vs(¥)] and E5(p) = Ex(3)/[1 —va(3)vsa(0)], with vix(y) and vsi(y),
and v,3(y) and v5,(v) being four Poisson’s ratios in the x—z and p-z planes, respectively.
For isotropic materials, the elastic properties in (36) reduce to those in (1) and (2). The
variation of Poisson’s ratios can also be written in the exponential form similar to that of
the Poisson’s ratio in (1) for isotropic materials.
We consider a special set of elastic properties, which is given by

=2 =Y=7
va(h) = va0(1+ey)e”,
Vo (0) = viso(l+e9) e,

E5())

pa() = (37)
2[V/'1 +v5(¥)]
whereas vy, and v 5 are v5, () and v},(y) at y = 0, respectively ; ¢ is a constant ; and
E')()
= 38
=g (38)

For plane stress problems, v5,(y) = v, (¥) and v},(y) = vi,(¥), with v, () and v;(p)
being two Poisson’s ratios in the x-y plane. For plane strain problems,
vi2(0) = M) vl —vi()va()], and  v5(p) = [va(0) +va(m)va ()l
[1 —v3(»)v32(¥)]- These forms for the material properties of orthotropic, functionally graded
materials provide analytical flexibility, and lead to somewhat simple forms for the field

equations.
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Using this set of elastic properties, the stress function ®(x, y) satisfies the following
equation

o ~ o' oo ~ 0 oo o

o —i—ZV//laxzay2 +ia7 —2y/4 oxidy —2y4 oy +y°4 o = 0. (39)
Making a variable change
X = A", (40)
eqn (39) becomes
o Tl e W

in the {—y plane. The above equation shows the orthotropy rescaling (Suo e a/., 1991)
works for nonhomogeneous materials which obey (36) and (37), since it is the same as eqn
(3) for isotropic materials. Stresses in terms of ®(¢, y) are

oo Rl R iRt}
Ty = 50 AT G, = 5 A Oy = — 5% . (42)
éy? o& ofay

Stress intensity factors are expressed as

s —3/8 li T oo
& Kl = éﬁtl)gl:o\/ e 862 ?
_; . — 0’
ATVEK, = —5ﬂ1|1)?:0\/2nfa£a)J. (43)

According to above analysis and the solution for isotropic materials in Section 4, the
stress factors to the orthotropic problem are given by

| e (A, TN
2K i Ky = \/‘P—ie"" fM eir (44)
\//2 h W

where A, I, ¢ and w are the same as those in the solution for isotropic materials in Section 4.

From above expression, K; and K|, are those of the isotropic solution modified by
multipliers A** and A'¥, respectively. The phase angle of the orthotropic problem, ¥ ..,
relates to that of the corresponding isotropic problem, v, by

tanomm) = 47 tan(). (45)

The effects of 2 on the crack-tip field depend on its value. When A > 1, the stress intensity
factors are larger than those of the isotropic case, and the phase angle is smaller than that
of the isotropic case ; and when 4 < 1, the stress intensity factors are smaller than those of
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Fig. 6. The effects of /. on the phase angle and the magnitude of the complex stress intensity factor
| K| for four-point bending specimen.

the isotropic case, and the phase angle is larger than that of the isotropic case. For the four-
point bending specimen configuration, these effects of A are shown in Fig. 6.

6. THE ANTI-PLANE PROBLEM

The cracked strip shown in Fig. 1 subjected to anti-plane deformation (mode III
problem) is considered in this section. For the mode III problem, we take the shear modulus
in the following form

1(y) = po e, (46)

where g is the shear modulus at y = 0 and 7 represents the material gradient. The strip is
loaded at the left side far behind the crack tip, and the traction is

g.= —0,¢"7 47)

for x > —oc and y > 0, and
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.. = 0,87 (48)
for x - —oo and y < 0. The traction produces two uniform strains,

g,

Ee: = — 57 (49)
2p,
for x - —o0 and y > 0, and
(o)
& =75 50)
2p, (
for x > —oc and y < 0. From the equilibrium requirement,
h 0
P= J o.dy = j o..dy, (51
0 —H
and (47) and (48), we have
Py
o, = , (52)
L
Py
0, = ———.
P

Having the remote ficld, the stress intensity factor Kj;, is readily obtained from the J

integral as
P [ vk ¢ —1
szﬁ\/ - <1+ - ) (53)
\//1 e —1 1—e

The normalized stress intensity factor KIH\/Z/P, which is equal to the second square root
in above equation, is only related to the dimensionless group, y# and yH. It increases as y
increases. When y = 0, the stress intensity factor recovers the solution for a homogeneous
material ; when y = oo or H =0, it is unbounded. A plot of the stress intensity factor is
shown in Fig. 7.

4 1 T Ll T T
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3r ]
x hH=1
8 L h/H=0.5 = - i
= 2| , / hiH=2

/ ]
1F WH=0.1 ]
%5 0.4 0.8 1.2 16 2.0 24
yh

Fig. 7. The stress intensity factor K, for the anti-plane problem.
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Fig. 8. A comparison of stress intensity factors obtained from different forms of the shear modulus.

When the shear modulus varies linearly along the y axis, it is written as

My — v E“H'i'[u[h
avm?’ Y v E

uly) = (54)

where g, and g, are shear moduli at the upper and lower boundaries of the strip, respectively.
The stress intensity factor for the lincar variation of the shear modulus is

P 2(r+mn) m+2r+n
K = /——— <1+n_, , (55)
Vh m+2r4n r+2n+1

where r = g, /p; and n = h/H. A comparison of the stress intensity factor obtained from the
linear variation of the shear modulus with that from the exponential variation of the shear
modulus is shown in Fig. 8 for #/H = 1. The results show that the difference between them
is quite small, less than 5% in the range considered. When the crack moves to the ceramic
side, the difference between the two solutions becomes smaller, and when it moves to the
metal side the difference becomes larger. The difference is less than 0.4% for #/H = 0.1;
and is less than 8% for h/H = 10.

7. DISCUSSION

A complete solution to a semi-infinite crack in a strip of an isotropic, functionally
graded material is obtained. It is shown that material gradients have strong effects on the
stress intensity factors and the phase angle. For the double-cantilever beam, the mode 1
stress intensity factor is 3.55 and the mode 11 stress intensity factor is 1.02, when the crack
is at the middle of the strip (#/H = 1) and the ratio of the Young’s modulus at the upper
boundary to that at the lower boundary is 7; for homogeneous material with the same
geometry, they are 3.46 and 0, respectively. For the four-point bending specimen con-
figuration, the mode I stress intensity factor is 2.21 and the mode II stress intensity factor
is 2.07, when the crack is at the middle of the beam (A/H = 1) and the ratio of the Young’s
modulus at the upper boundary to that at the lower boundary is 7; for a homogeneous
material with the same geometry, the two stress intensity factors are 1.73 and 1.50, respec-
tively. These results show that the increase of the mode II stress intensity factor due to the
increase of the material gradients is significant, in other words, the mode II stress intensity
factor plays an important role in the fracture of FGMs.

The solution for isotropic materials is extended to orthotropic, functionally graded
materials by orthotropy rescaling. The effects of the orthotropy on stress intensity factors
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and the phase angle are explicitly shown in the orthotropic solution. In the orthotropic
solution, since we assume a special set of material properties, the orthotropy is measured
by one parameter, the ratio of the Young’s modulus in the direction of material property
variation to that in the direction perpendicular to the above property variation direction.
For general orthotropic, functionally graded materials, there are other parameters in
addition to the ratio for characterizing the orthotropy. However, it seems that the ratio is
the most important parameter to be considered.

The crack propagation is the competition between the driving force, the energy release
rate, and the toughness of the material, i.e., a crack starts to extend when the former one
exceeds the latter one. The FGMs are expected to have considerably larger toughness than
corresponding bimaterials because there are no large weak planes, such as interfaces, e.g, a
layered structure with compositionally graded interlayers is expected to have a larger
toughness than that obtained by bonding these layers with sharp interfaces. On the other
hand, the energy release rate of a FGM is at the same level as that of the corresponding
bimaterial. Consider a bimaterial which has the same configuration as the FGM shown in
Fig. 1; above the x axis is material #1 with Young’s modulus E, and below the x axis is
material #2 with Young’s modulus E;. Figure 9 shows the comparison of the energy release
rate of the FGM with that of the bimaterial for the double-cantilever beam when
0 < #/H < 2. Inthecalculation, E,/FE; = 7, and the Poisson’s ratios of the two bulk materials
forming the bimaterial are taken to be 0.3. For the bimaterial, the two Dundurs’ parameters
are ¢ = 0.75 and § = 0.21. Our calculation shows, at A/H = 1, the energy release rate is
13.55 for the FGM, whereas it is 16.51 for the bimaterial ; at 4/H = 0.1, they are 5.51 and
4.61 for the FGM and the bimaterial, respectively; at #/H = 10, they are 6559 and 6517
for the FGM and the bimaterial, respectively. When the crack is at the middle of the plate
(h/H = 1), the energy release rate of the FGM is smaller than that of the bimaterial ; when
the crack is very close to the upper or lower boundary, the former one is larger than the
latter one. But in any case, the two energy release rates are at the same level. This fact
reveals one of the advantages of using FGMs, ie., FGMs can be subjected to higher
external loads than corresponding bimaterials.

The crack propagation direction follows different criteria for different kinds of
materials. For homogeneous materials, a crack propagates along the direction in which the
mode Il stress intensity factor is vanished, and the toughness is independent of the propa-
gation direction and the mode mixity. For bimaterials, the propagation direction of an
interface crack is decided by the driving force and the toughness of the interface and the
two bulk materials. If the toughness of the bulk materials is relatively large, the interface
crack would extend along the interface, otherwise, kinking is favored. For FGMs, their
toughness is likely dependent on the material gradients, the position of the crack tip, the

40 —T T

E’/E'=7
30|

20 bimaterial

JE,h*/M?

10

%o 05 1.0 15 2.0
t/H

Fig. 9. A comparison of the energy release rate of the FGM with that of the corresponding
bimaterial.
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propagation direction and the mode mixity. From a continuum point of view, the propa-
gation direction is the direction at which the difference of the energy release rate and the
toughness reaches a maximum value, as discussed at the end of Section 3. For complete
understanding of the fracture behavior of FGMs and a fully rationalized FGM charac-
terization, experiments need to be carried out and more specimen configurations need to
be calibrated.
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